Hidden Markov models for modeling daily rainfall occurrence over Brazil
نویسنده
چکیده
A hidden Markov model (HMM) is used to describe daily rainfall occurrence at ten gauge stations in the state of Ceará in northeast Brazil during the February–April wet season 1975–2002. The model assumes that rainfall occurrence is governed by a few discrete states, with Markovian daily transitions between them. Four “hidden” rainfall states are identified. One pair of the states represents wet vs. dry conditions at all stations, while a second pair of states represents north-south gradients in rainfall occurrence. The estimated daily state-sequence is characterized by a systematic seasonal evolution, together with considerable variability on intraseasonal, interannual and longer time scales. The first pair of states are shown to be associated with large-scale displacements of the tropical convergence zones, and with teleconnections typical of the El Niño-Southern Oscillation and the North Atlantic Oscillation. A trend toward greater rainfall occurrence in the north of Ceará compared to the south since the 1980s is identified with the second pair of states. A non-homogeneous HMM (NHMM) is then used to downscale daily precipitation occurrence at the ten stations, using general circulation model (GCM) simulations of seasonal-mean large-scale precipitation, obtained with historical sea surface temperatures prescribed globally. Interannual variability of the GCM’s large-scale precipitation simulation is well correlated with seasonaland spatial-averaged station rainfall-occurrence data. Simulations from the NHMM are found to be able to reproduce this relationship. The GCM-NHMM simulations are also able to capture quite well interannual changes in daily rainfall occurrence and 10-day dry spell frequencies at some individual stations. It is suggested that the NHMM provides a useful tool (a) to understand the statistics of daily rainfall occurrence at the station level in terms of large-scale atmospheric patterns, and (b) to produce station-scale daily rainfall sequence scenarios for input into crop models etc.
منابع مشابه
مدل سازی فضایی-زمانی وقوع و مقدار بارش زمستانه در گستره ایران با استفاده از مدل مارکف پنهان
Multi site modeling of rainfall is one of the most important issues in environmental sciences especially in watershed management. For this purpose, different statistical models have been developed which involve spatial approaches in simulation and modeling of daily rainfall values. The hidden Markov is one of the multi-site daily rainfall models which in addition to simulation of daily rainfall...
متن کاملDownscaling of daily rainfall occurrence over Northeast Brazil using a Hidden Markov Model
A hidden Markov model (HMM) is used to describe daily rainfall occurrence at ten gauge stations in the state of Ceará in northeast Brazil during the February–April wet season 1975–2002. The model assumes that rainfall occurrence is governed by a few discrete states, with Markovian daily transitions between them. Four “hidden” rainfall states are identified. One pair of the states represents wet...
متن کاملMarkov Chain Analogue Year Daily Rainfall Model and Pricing of Rainfall Derivatives
In this study we model the daily rainfall occurrence using Markov Chain Analogue Yearmodel (MCAYM) and the intensity or amount of daily rainfall using three different probability distributions; gamma, exponential and mixed exponential distributions. Combining the occurrence and intensity model we obtain Markov Chain Analogue Year gamma model (MCAYGM), Markov Chain Analogue Year exponentia...
متن کاملModeling winter rainfall in Northwest India using a hidden Markov model: understanding occurrence of different states and their dynamical connections
A multiscale-modeling framework for daily rainfall is considered and diagnostic results are presented for an application to the winter season in Northwest India. The daily rainfall process is considered to follow a hidden Markov model (HMM), with the hidden states assumed to be an unknown random function of slowly varying climatic modulation of the winter jet stream and moisture transport dynam...
متن کاملSpace time modeling of precipitation using a hidden Markov model and censored Gaussian distributions
A new hidden Markov model (HMM) for the space-time evolution of daily rainfall is developed which models precipitation within hidden regional weather types by censored power-transformed Gaussian distributions. The latter provide flexible and interpretable multivariate models for the mixed discrete-continuous variables that describe both precipitation, when it occurs, and no precipitation. The m...
متن کامل